National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Synthesis of Modern Structures of Frequency Filters
Friedl, Martin ; Hájek, Karel (referee) ; Brančík, Lubomír (referee) ; Sedláček, Jiří (advisor)
Within modern frequency structures, the filter frequency region of up to 10 MHz constitutes a promising research topic that currently attracts intensive attention of specialists interested in the problem. The main reason of this fact consists in that the rapid development of modern technology allows the production of innovated structures of the analog frequency filters required in the defined band. In this context, however, it is also necessary to refine the methods applied in the synthesis and optimization of these structures; such improvement should be carried out with respect to fundamental properties and usability of today's active elements (operational amplifiers with voltage feedback whose Gain Bandwidth Product ranges within units of GHz, operational amplifiers with current feedback, conveyors, transimpedance operational amplifiers). In this thesis, active blocks of synthesis inductors (SIs) and frequency dependent negative resistors (FDNRs) are examined in detail, and the author provides novel formulas to define the basic parameters of the dual circuits. Due emphasis was placed on optimizing the basic building blocks of the second order and defining the variation of their properties caused by the addition of modern active elements. The blocks were analyzed and modified in view of their possible use in higher-order circuits. For active filters of a higher order, simulations were performed to indicate the actual sensitivity of the cascade and non-cascade ARC structures. The following phase of the research comprised mainly the designing of several filters, and this activity was further completed with the verification of the methodology for the synthesis and optimization of higher-order loss ladder filters with modern active blocks. Special attention was paid also to the methods enabling the optimization of such filters, which are invariably based on RLC prototypes. In order to verify the theoretical conclusions, the author materialized a large number of sample optimized filters and measured their parameters. The closing section of the thesis describes the use of the filters in specific applications.
Active Frequency Filter Design Methods Based on Passive RLC Prototype
Pisár, Peter ; Vrba, Kamil (referee) ; Kubánek, David (advisor)
The aim of this diploma thesis is to design active frequency filters based on passive RLC prototype. Three methods of the design of active filters and active functional blocks of electronic circuits working in current or mixed mode are used to this purpose. These blocks allow to process electrical signals with frequencies up to low tens of megahertz. In addition they feature for instance with high slew rate and low supply voltage power. Active high-pass and low-pass 2nd order filters are designed using simulation of inductor by active subcircuit method. Grounded and subsequently floating synthetic inductor is made with the current conveyors in the first case and with the current operational amplifiers with single input and differential output in the second case. This method advantage is relatively simple design and disadvantage is great quantity of active functional blocks. Active filters based on passive frequency ladder 3rd order filter while only one floating inductor is connected, are designed with circuit equation method. In the first design differential input / output current followers are used and in the second case current-differencing buffered amplifiers are used. This method benefits by smaller active blocks number and disadvantage is more complex design of the active filter. Active filter based on passive prototype of low-pass 3rd order filter with two floating inductors is designed with Bruton transformation method. Final active filter uses current operational amplifiers with single input and differential output which together with other passive elements replace frequency depending negative resistor, which arise after previous Bruton transform. This method usage is advantageous if the design consists of larger quantity of inductors and less number of capacitors. High-pass 2nd order filter is simulated by tolerance and parametrical analyses. Physical realisation utilising current feedback operational amplifier which substitute commercially hardly accessible current conveyors is subsequently made. Measurements of constructed active filter show that additional modifications, which allow better amplitude frequency characteristics conformity, are necessary.
Aplication of SI, superinductors and FDNR in frequency filters
Mach, Ladislav ; Brančík, Lubomír (referee) ; Petržela, Jiří (advisor)
This thesis explains possibilities to substitute inductors in electronic circuits and at the same times it shows the calculation of individual discrete elements. An inductor may be substituted in two ways. Either by means of a circuit which directly replaces the inductor as a discrete element, or the circuit may be transformed into another one with similar features. For the second option, however, a synthetic FDNR element has to be used. It is a frequency depended negative resistor. Students can try out the use of superinductors, synthetic inductors in frequency filters with a specially designed facility. They also can transform inductivity and capacity arbitrarily in both directions, higher and lower.
ARC filters with modern active elements
Sedláček, Petr ; Murina, Milan (referee) ; Sedláček, Jiří (advisor)
The aim of this project is to compare the characteristics of low pass and high pass filters designed by various methods of synthesis. Firstly, the attributes and characteristics of filters and realisations of higher order filters using normed low pass filter and approximation of gain-magnitude frequency response are described and then used in application. The circuits that substitute coils directly or undirectly using the Bruton transform are discussed next. The practical part of project concerns of design of high pass and low pass itself, using two methods of synthesis. Proper real operational amplifier has to be choose for used frequency. In the final part of work the designed circuits were realized and their characteristics were measured and examined.
Active Frequency Filters for Higher Frequencies
Fröhlich, Lubomír ; Dostál, Tomáš (referee) ; Biolek, Dalibor (referee) ; Sedláček, Jiří (advisor)
This thesis deals with the synthesis and optimization of frequency analogue filters with modern active elements usable for higher frequencies. The thesis is divided into three parts, the first part deals with the problematic concerning Leap-Frog combined ARC structure. Due to a difficult design, this method is not described in a detail and used in practice, although it shows e.g. low sensitivity. Firstly, a complete analysis of individual filters was made (for and T endings) and consequently these findings were used during implementation of this method to NAF program. Finally, samples of real filters were realized (for verification of functioning and correct design). Another very interesting topic concerning filters is usage of coupled band-pass for small bandwidth, where it is necessary to solve the problems concerning ratio of building elements values, but also price, quality, size of coils, sensitivity, Q factors, coefficients etc. That is why in practice a coil is very often substituted with other equivalent lossy and lossless blocks which create ARC filters structure. The design and the possibility of usage of lossy grounded elements were described here (such as synthetic inductors, frequency dependent negative resistor). Some parts of the design are individual computer sensitivity analysis, setting of usage and quality comparison of individual lossy grounded blocks. Besides, a program for these elements was created, it is useful for a quick design and depiction of transfer characteristics. The third part deals with the usage of tuning universal filters consisting three or more operational amplifiers, which secures its universality and possibility to create different kinds of transfer characteristic. In practice, Akerberg - Mossberg and Kerwin - Huelsman - Newcomb are the most used types of filters. These were also compared with less common universal filters. In the end, the possibility of digital tuning of universal filter with the help of digital potentiometers for filters of 10th order and frequency around 1 MHz was shown.
ARC filters with modern active elements
Sedláček, Petr ; Murina, Milan (referee) ; Sedláček, Jiří (advisor)
The aim of this project is to compare the characteristics of low pass and high pass filters designed by various methods of synthesis. Firstly, the attributes and characteristics of filters and realisations of higher order filters using normed low pass filter and approximation of gain-magnitude frequency response are described and then used in application. The circuits that substitute coils directly or undirectly using the Bruton transform are discussed next. The practical part of project concerns of design of high pass and low pass itself, using two methods of synthesis. Proper real operational amplifier has to be choose for used frequency. In the final part of work the designed circuits were realized and their characteristics were measured and examined.
Synthesis of Modern Structures of Frequency Filters
Friedl, Martin ; Hájek, Karel (referee) ; Brančík, Lubomír (referee) ; Sedláček, Jiří (advisor)
Within modern frequency structures, the filter frequency region of up to 10 MHz constitutes a promising research topic that currently attracts intensive attention of specialists interested in the problem. The main reason of this fact consists in that the rapid development of modern technology allows the production of innovated structures of the analog frequency filters required in the defined band. In this context, however, it is also necessary to refine the methods applied in the synthesis and optimization of these structures; such improvement should be carried out with respect to fundamental properties and usability of today's active elements (operational amplifiers with voltage feedback whose Gain Bandwidth Product ranges within units of GHz, operational amplifiers with current feedback, conveyors, transimpedance operational amplifiers). In this thesis, active blocks of synthesis inductors (SIs) and frequency dependent negative resistors (FDNRs) are examined in detail, and the author provides novel formulas to define the basic parameters of the dual circuits. Due emphasis was placed on optimizing the basic building blocks of the second order and defining the variation of their properties caused by the addition of modern active elements. The blocks were analyzed and modified in view of their possible use in higher-order circuits. For active filters of a higher order, simulations were performed to indicate the actual sensitivity of the cascade and non-cascade ARC structures. The following phase of the research comprised mainly the designing of several filters, and this activity was further completed with the verification of the methodology for the synthesis and optimization of higher-order loss ladder filters with modern active blocks. Special attention was paid also to the methods enabling the optimization of such filters, which are invariably based on RLC prototypes. In order to verify the theoretical conclusions, the author materialized a large number of sample optimized filters and measured their parameters. The closing section of the thesis describes the use of the filters in specific applications.
Active Frequency Filters for Higher Frequencies
Fröhlich, Lubomír ; Dostál, Tomáš (referee) ; Biolek, Dalibor (referee) ; Sedláček, Jiří (advisor)
This thesis deals with the synthesis and optimization of frequency analogue filters with modern active elements usable for higher frequencies. The thesis is divided into three parts, the first part deals with the problematic concerning Leap-Frog combined ARC structure. Due to a difficult design, this method is not described in a detail and used in practice, although it shows e.g. low sensitivity. Firstly, a complete analysis of individual filters was made (for and T endings) and consequently these findings were used during implementation of this method to NAF program. Finally, samples of real filters were realized (for verification of functioning and correct design). Another very interesting topic concerning filters is usage of coupled band-pass for small bandwidth, where it is necessary to solve the problems concerning ratio of building elements values, but also price, quality, size of coils, sensitivity, Q factors, coefficients etc. That is why in practice a coil is very often substituted with other equivalent lossy and lossless blocks which create ARC filters structure. The design and the possibility of usage of lossy grounded elements were described here (such as synthetic inductors, frequency dependent negative resistor). Some parts of the design are individual computer sensitivity analysis, setting of usage and quality comparison of individual lossy grounded blocks. Besides, a program for these elements was created, it is useful for a quick design and depiction of transfer characteristics. The third part deals with the usage of tuning universal filters consisting three or more operational amplifiers, which secures its universality and possibility to create different kinds of transfer characteristic. In practice, Akerberg - Mossberg and Kerwin - Huelsman - Newcomb are the most used types of filters. These were also compared with less common universal filters. In the end, the possibility of digital tuning of universal filter with the help of digital potentiometers for filters of 10th order and frequency around 1 MHz was shown.
Aplication of SI, superinductors and FDNR in frequency filters
Mach, Ladislav ; Brančík, Lubomír (referee) ; Petržela, Jiří (advisor)
This thesis explains possibilities to substitute inductors in electronic circuits and at the same times it shows the calculation of individual discrete elements. An inductor may be substituted in two ways. Either by means of a circuit which directly replaces the inductor as a discrete element, or the circuit may be transformed into another one with similar features. For the second option, however, a synthetic FDNR element has to be used. It is a frequency depended negative resistor. Students can try out the use of superinductors, synthetic inductors in frequency filters with a specially designed facility. They also can transform inductivity and capacity arbitrarily in both directions, higher and lower.
Active Frequency Filter Design Methods Based on Passive RLC Prototype
Pisár, Peter ; Vrba, Kamil (referee) ; Kubánek, David (advisor)
The aim of this diploma thesis is to design active frequency filters based on passive RLC prototype. Three methods of the design of active filters and active functional blocks of electronic circuits working in current or mixed mode are used to this purpose. These blocks allow to process electrical signals with frequencies up to low tens of megahertz. In addition they feature for instance with high slew rate and low supply voltage power. Active high-pass and low-pass 2nd order filters are designed using simulation of inductor by active subcircuit method. Grounded and subsequently floating synthetic inductor is made with the current conveyors in the first case and with the current operational amplifiers with single input and differential output in the second case. This method advantage is relatively simple design and disadvantage is great quantity of active functional blocks. Active filters based on passive frequency ladder 3rd order filter while only one floating inductor is connected, are designed with circuit equation method. In the first design differential input / output current followers are used and in the second case current-differencing buffered amplifiers are used. This method benefits by smaller active blocks number and disadvantage is more complex design of the active filter. Active filter based on passive prototype of low-pass 3rd order filter with two floating inductors is designed with Bruton transformation method. Final active filter uses current operational amplifiers with single input and differential output which together with other passive elements replace frequency depending negative resistor, which arise after previous Bruton transform. This method usage is advantageous if the design consists of larger quantity of inductors and less number of capacitors. High-pass 2nd order filter is simulated by tolerance and parametrical analyses. Physical realisation utilising current feedback operational amplifier which substitute commercially hardly accessible current conveyors is subsequently made. Measurements of constructed active filter show that additional modifications, which allow better amplitude frequency characteristics conformity, are necessary.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.